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Large language models (LLMs) are increasing in capability and popularity, propelling their application in new domains—including

as replacements for human participants in computational social science [37], user testing [19], annotation tasks [16], and more [2, 13].
Traditionally, in all of these settings survey distributors are careful to find representative samples of the human population to ensure
the validity of their results and understand potential demographic differences [21]. This means in order to be a suitable replacement,
LLMs will need to be able to capture the influence of positionality (i.e., relevance of social identities like gender and race). However,
we show two inherent limitations in the way current LLMs are trained that prevent this. We argue analytically for why LLMs are
doomed to both misportray and flatten the representations of demographic groups, then empirically show this to be true on 4 LLMs
through a series of human studies with 3200 participants across 16 demographic identities. We also discuss a third consideration about
how identity prompts can essentialize identities. Throughout, we connect each limitation to a pernicious history that explains why it
is harmful for marginalized demographic groups. Overall, we urge caution in use cases where LLMs are intended to replace human
participants whose identities are relevant to the task at hand.

CCS Concepts: • Social and professional topics→ Computing / technology policy; Computing and business; User character-
istics; • Computing methodologies→ Artificial intelligence; Natural language processing; • Human-centered computing→
Human computer interaction (HCI).

Additional Key Words and Phrases: large language models, human participants, representative sampling, standpoint epistemology

ACM Reference Format:
Angelina Wang, Jamie Morgenstern, and John P. Dickerson. 2024. Large Language Models Cannot Replace Human Participants
Because They Cannot Portray Identity Groups . In LLMs as Research Tools Workshop at CHI 2024. ACM, New York, NY, USA, 6 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Large language models (LLMs) are proliferating, and increasingly touted as being able to replace more costly human
participants in a variety of domains such as user studies [19], annotation tasks [12], computational social science [37],
opinion surveys [2], and more. However, in the surge of excitement it often seems forgotten what remains one of the
biggest challenges in human participant recruitment: representative sampling [21]. Even in cases where representative
sampling is not explicitly pursued, the demographic identity of each participant is often collected out of recognition
that it impacts each person’s positionality and thus response [18]. When Amazon Mechanical Turk was beginning to be
used as a replacement for traditional recruitment for human participants, there were concerns about the validity of this
new domain, and research studied the demographics of the new platform [3]. Now, in this far greater paradigm shift,
we cannot neglect to consider this key component of validity: demographic differences. This means that the ability of
LLMs to replace human participants is wholly contingent on LLMs being able to represent the perspectives of different
demographic identities. Prior work has speculated that LLMs’ vast training data enables it to do precisely this, and

2024. Manuscript submitted to ACM

1

https://arxiv.org/abs/2402.01908
https://doi.org/XXXXXXX.XXXXXXX


LLMs as Research Tools Workshop at CHI 2024, , Wang et al.

discussed the enormous implications for social science research [13]. In this work, we bring empirical clarity to these
claims by comparing LLM responses to human participant responses. We outline technical and ethical considerations for
two key limitations that prevent LLMs from fully representing demographic perspectives:misportrayal (e.g., when asked
to represent the perspective of a person with impaired vision’s perspective on immigration, generations of unlikely
phrases like “While I may not be able to visually observe the nuances of the US-Mexican border or read statistics, I
believe in the importance of fair and just immigration”) and group flattening (e.g., LLMs missing that not all non-binary
people use they/them pronouns). We also bring up a third consideration around identity essentialization (i.e., reducing
identities to fixed characteristics) that arises in even a seemingly more permissible setting: when identity prompts are
used to increase response coverage. We therefore caution against the replacement of human participants by LLMs.

This is not a speculative concern: researchers are publishing papers about the ability of LLMs to replace human
participants [2, 4, 8, 12, 16, 19, 33, 37], and companies1 are deploying products for similar purposes as well—and it is
in exactly these scenarios that we perform our analyses. There are also closely related but distinct use cases such as
chatbots with personas [22, 27, 36]. We do not study the particular scenarios of these chatbots, but all of our findings
about the ways LLMs will misportray and flatten demographic groups will persist in those popular settings, and add a
new relevant factor to consider. Prior work considering the harms of personas in this setting have focused on how
demographic personas change the behavior of the language model [15, 28, 31]. In our use case, we specifically consider
cases where we expect demographic personas to be relevant in model responses, and work here has found that LLMs
prompted with demographic attributes are more stereotypical [6, 7]. We put forth a complementary analysis on a
related but ultimately different set of harms. We do not provide a uniform condemnation against LLMs prompted with
demographic identities, but rather urge caution by showing exactly how such deployment can be harmful by grounding
the limitation in historical discrimination. These harms cannot be totally resolved by current iterations of LLMs, but
can be reduced, and it will be up to each deployer to decide whether the specific benefits outweigh the harms.

To be precise about our concerns, the types of questions we ask the LLMS come from a survey we conduct of
15 papers studying LLM replacement of human participants. From this, we delineate the four possible reasons that
LLMs might be prompted with demographic identities (left table in Fig. 1): contingent perspectives, socially relevant

perspectives, subjective annotations, and coverage-increasing. We perform our analyses on four different large language
models: Llama-2-Chat 7B [30], Wizard Vicuna Uncensored 7B [11, 34], GPT-3.5-Turbo, and GPT-4 [25].

Overall we demonstrate two fundamental limitations of LLMs in portraying demographic identities, and argue they
are inherent to the format of training text data and the loss functions used during training (right table in Fig. 1). We also
discuss a third consideration for the more innocuous sounding use case of identity-prompted LLMs to increase coverage.
Our argument is ultimately that LLMs cannot replace human participants because of their inability to represent identity
groups, with a caveat of caution rather than total condemnation in cases of supplement (e.g., pilot studies).

2 LLMS CAN MISPORTRAY MARGINALIZED GROUPS AS MORE LIKE OUT-GROUP IMITATIONS THAN
IN-GROUP REPRESENTATIONS

The first limitation is that by being trained on scraped text data, author demographic identity and produced text are
rarely associated. There are exceptions such as when an author’s name, which may be attached to a piece of text, is
identity-coded, or in autobiographical texts where authors may remark upon their own identity. However, outside of
these circumstances, we could imagine that oftentimes when a demographic identity is textually invoked, it may be

1Example for-profit firms include https://synthetic-humans.ai/ and https://www.syntheticusers.com.
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Fig. 1. Summary.We consider four possible reasons for prompting an LLMwith a demographic identity: when the answer is contingent
on identity membership, when identity is relevant to the answer, when the answer is subjective in a way where identity might play a
role, and where identity is intended to increase response coverage. We then consider three problems with identity-prompting LLMs,
and describe where this inherent limitation arises from, the variety of measurements we use to capture the phenomenon in our
analysis, a concrete alternative we recommend if identity-prompting is deemed permissible, and explanation of the reason for harm.

more likely to be from an out-group member speaking about the group, rather than an in-group member speaking about
themselves. For example, it is documented that historically autism is primarily medicalized by out-group members about
in-group members, rather than in more autobiographical settings [17]. The implication of this limitation is that when
asked to portray the perspectives of different demographic groups, LLMs may be more likely to align with out-group
discussions rather than genuine in-group representations, the former of which has been shown to be stereotypical [20].

We show results on GPT-4 in Fig. 2, and find many instances where the LLM is more like out-group imitations rather
than in-group representations. In fact, across all four LLMs on R1-Contingent a majority of metrics show the three
personas of White person, non-binary person, and person with impaired vision as more like out-group imitations than
in-group representations. We see similar but weaker results on women and White men. For R2-Relevant we again see
across all four LLMs misportrayals for non-binary person and person with impaired vision, but not as much for White
person; instead, we see a misportrayal for women and Gen Z. For R3-Subjective we do not see misportrayal effects
because LLMs do not change their responses much across identity-prompts for these more constrained annotation
tasks of toxicity determination and positive reframing.

There are particular reasons that make this technical limitation of LLMs misportraying certain identities to be
more similar to out-group imitations than in-group representations socially harmful. For one, the differential between
out-group imitation and in-group representation and has been shown to reveal stereotypes, so LLM behavior of this
kind could be seen to uphold these stereotypes [20]. For another, the practice of speaking for others has a pernicious
history which can often involve the erasure and reinscription of social hierarchies [1, 29].
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Fig. 2. On two sets of reasons (rows), each point indicates the value of GPT-4’s responses on one question for that demographic group
across 100 samples. Some rows have more than one question (e.g., two per R2-Relevant). Each color indicates a different identity axis,
and the columns indicate six different metrics used to assess similarity. Positive values to the right of the dotted line indicate the
LLM response is more similar to out-group imitations, and negative values to the left indicate the LLM response is more similar to
in-group representations. Circles indicate statistical significance (𝑝 < .05) and crosses indicate otherwise. The fraction indicates how
many measurements in that row are statistically significantly positive, and bolded rows indicate when more than half of the metrics
show the LLM response to be statistically significantly more like the out-group imitation than in-group representation. Overall on
R1-Contingent and R2-Relevant, non-binary person and person with impaired vision are consistently more like out-group imitations.

3 LLMS FLATTEN GROUPS AND PORTRAY THEM ONE-DIMENSIONALLY

The second limitation is that because of loss functions like cross-entropy that are used to train LLMs, models are rewarded
for producing the more likely outputs for any given piece of text. This flattens the representation of certain groups and
erases subgroup heterogeneity (e.g., that within women, Black women are different thanWhite women) [9, 10, 32]. This is
especially harmful in the context of flattening demographic groups with a history of being portrayed one-dimensionally
(e.g., Black people). Empirically, we find that all four LLMs on all questions tested, and across four different measures of
diversity, generate responses for each identity group that are flatter than that of humans.

4 ESSENTIALIZING

Finally, we explore a slightly different reason one might prompt an LLM with demographic identities: to increase the
coverage of the resulting responses in scenarios like anticipatory work where the goal is to generate a large range of
responses rather than to represent different groups. Here, we find that prompting with behavioral personas or in some
cases even astrology signs achieves the same effect of increasing coverage as prompting with sensitive demographic
identities does. We argue that if such coverage can be achieved without unnecessary essentialization of identity, it likely
should be. In these settings, identity-prompting LLMs can be seen as akin to designers leveraging user personas to
try and see things from different perspectives [14]. However, personas have limitations, and may rely on stereotypes
and reductionist representations about people [5, 23, 24, 26]. Thus, there is sometimes a recommendation among user
researchers to move away from personas based on sensitive demographic attributes, which may reinforce stereotypes,
and towards those based on behavioral characteristics [35]. Here we mirror this suggestion in the LLM space.
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